?

Log in

No account? Create an account
мера1

ss69100


К чему стадам дары свободы...

Восстановление смыслов


Предыдущий пост Поделиться Следующий пост
Полевая электротехника
мера1
ss69100



Вопросы в тему есть? Целых два? Догадываюсь. Первый, это где, посреди глуши и дикости, раздобыть мощный магнит? Второй, откуда, в той же глуши, взять высокое напряжение для электрофильтра? Резонно.




 Начнем с магнита... Дорогие, как бы выпускники средней школы! Вы слышали, что у планеты Земля есть собственное магнитное поле? Отлично. А про свойство железных предметов намагничиваться что-либо знаете? Совсем хорошо! Как это делается, хоть раз, видели? В школе такого не показывали? Эх, опять мне...




 Берем любой стальной стержень (иглу, разогнутую канцелярскую скрепку, гвоздь, вязальную спицу) и втыкаем в деревянную щепку, придавая плавучесть. Иглу, помусолив её жирными пальцами, при известной ловкости, можно положить на поверхность воды прямо так. Что случится? Иголка развернется, вдоль линий земного магнитного поля, указав направление на Северный полюс. Горизонтальная координата есть. Теперь ту же самую иголку или спицу, надо уравновесить на нитке, перетянув пробную железку точно по центру тяжести, а затем развернуть её по найденной ранее линии "север-юг". Если спица хорошо сбалансирована, то она наклонится под углом к горизонту, показав вертикальную ориентацию линий магнитного поля в этой точке планеты. Зная указанные направления (отметив их подходящими ориентирами) мы можем изготовить постоянный магнит достаточно большой силы из любого железного предмета. Даже из лома или кочерги... Надо поставить будущий магнит в точно такое же положение, что имела указывающая магнитное склонение спица и несколько раз сильно ударить по железяке молотком. Вызвать вибрацию... Кочерга намагнитится! Насколько сильно - зависит от состава сплава и степени его закалки. Согни её подковой - готов магнит. Так примерно, сотни лет (!), до открытий Фарадея, изготавливали самодельные магниты и стрелки компасов.









Теоретически, можно обойтись без стука, ориентируя в магнитном поле Земли раскаленный докрасна (до полной потери магнитных свойств) железный предмет. В момент остывания получится тот же самый постоянный магнит. Даже более сильный, чем "ударного" изготовления. Но, сами прикиньте трудоемкость. А с готовым источником постоянного тока и катушкой, вам магнит любой изготовит. Это не интересно... В литературе, про альтернативную историю, называется - "рояль в кустах". Видели, кто-нибудь, тут рояли в кустах? Вот и я не видел... Угрюмый реализм вокруг, граждане. До изобретения гальванического элемента осталось ждать всего 170 лет, а до изолированного электрического провода - все двести. Не доживем...




 Вывод? При решении второго вопроса, о высоковольтном источнике энергии, рекомендую заранее руководствоваться животворящими идеями "чучхе", то есть, "опираться на собственные силы". Ну, ещё на знания, в собственной голове. Возвращаемся к школьной программе. Ну-ка... Есть ли у Земли собственное электрическое поле? Кто помнит его характеристики? Смелее! Чего смотрите уныло? Забыли или не знали?


  Электрическое поле атмосферы [Павел Алексеевич Кучер]




 Для абсолютно ясной погоды, в районе экватора, вертикальная напряженность электрического поля у поверхности моря составляет ~ 130 вольт на метр. То есть, подняв руки над головой, вы получите между пальцами и ботинками, разницу напряжений, равную амплитудному напряжению в обычной розетке, около 310 вольт. Почему этого никто не замечает? Во-первых, тело - проводящий объект и его потенциал почти совпадает с потенциалом грунта. Во-вторых, воздух - отличный изолятор и электрический ток через него протекает при гораздо более высоких напряженностях. Порядка 30 киловольт/см, ага... И даже в этом случае сила тока, через воздух, неприлично мала, миллиамперы и доли миллиампера. Кто был в горах и видел, как на пальцах и остриях возникают, в непогоду, "огни святого Эльма" - тот знаком с предельным вариантом атмосферного электричества. А лично мне такие огни ещё в школе показывали, с помощью электрической машины. Стоишь себе на диэлектрическом табурете, в затемненном классе, кто-то крутит ручку агрегата, а у тебя - волосы во все стороны торчком и на растопыренных руках горят синие коронные разряды. М-дя... А если, на ту же "электрическую табуретку" поставить девчонку с длинными волосами - зрелище отпадное. Поле раздвигает прическу, "снопом" во все стороны, каждая волосинка отдельно... Визг, крики, искры...




 Тот же самый эффект можно получить и совсем простыми, почти домашними средствами. Достаточно иметь под рукой высокий громоотвод или запустить в небо, на металлической проволоке, воздушный шар или змея. Простейшая арифметика. Если с каждым метром напряжение возрастает на 100-200 вольт, то уже в нескольких десятках метров над землей возникают условия для пробоя воздуха электрическим разрядом.




 Можно посчитать и конкретно. Формулу громоотвода знаете? Ну, же! Ладно... понимаю, вам это в жизни никогда бы не пригодилось, потому и голову ерундой не забивали... Кто же знал, что фортуна задом повернется? Хорошо, напоминаю - "Громоотвод защищает от атмосферного разряда (молнии) площадку, в виде окружности, описанной вокруг его основания, с радиусом равным его высоте". Почему? Потому, что громоотвод является концентратором напряжения, и все силовые линии атмосферного электрического поля, которые ранее равномерно распределялись по оной площадке, теперь "стянулись" к его вершине. Туда же, при случае, ударит из грозовой тучи молния. Навстречу развивающемуся с вершины громоотвода "лидеру". В смысле, сначала над его возвышенной частью возникнет коронный разряд, а уже оттуда потянет цепочку ионов воздуха, достаточную для пробоя молнии "линейного" типа. Господи, ребята, ну почему же у вас такие хмурые рожи?




 Спрашивается, можно ли получить сходный эффект (газовый разряд на высоко поднятом электроде) в ясную, безоблачную погоду? А если можно, то, что это нам дает в практическом смысле? Ведь за пределами разряда воздух так и останется диэлектриком. Тогда зачем? Есть причина и смысл, однако... Откуда вообще берется электрический заряд атмосферы? Что его питает и поддерживает, гм... миллиарды лет? Ликбез:


  Энергетический баланс атмосферы Земли [Павел Алексеевич Кучер]




 Приблизительно 40% энергии падающего на Землю солнечного света, по ходу обратного излучения в космос, на некоторое время (участок конвективного теплообмена) превращается в энергию потенциального электрического поля. Заряд тропопаузы и стратосферы производят восходящие от поверхности планеты потоки нагретого воздуха с примесью водяного пара. Естественная утечка этого заряда осуществляется за счет ионизации воздуха космическими лучами, гроз, выпадения дождя и снега на горные вершины. А вы думали, почему высокие пики всегда в снеговых шапках? Туда, то же самое электрическое поле, день и ночь тянет висящую в верхних слоях атмосферы заряженную ледяную пыль.




 Однако, начнем издалека, с космоса. Температура любого небесного тела жестко задана интегральной мощностью внешнего излучения, поглощаемой его поверхностью и внутренним тепловыделением из недр. Для Земли среднегодовой поток солнечного света колеблется от 250-300 Вт/кв. метр на экваторе до 50-120 Вт/кв. метр в полярных областях. Охлаждение в вакууме, естественно, чисто радиационное.




 Сумма потоков энергии, достигающих поверхности в точности равна потоку энергии излучаемой обратно в космос. Но, многие планеты Солнечной системы (в частности Земля) имеют атмосферу. У них только стратосфера (откуда тепловая радиация уходит в мировое пространство) близка к норме теплового баланса (для Земли около -25 градусов С). На поверхности небесного тела, окруженного газовой оболочкой, всегда значительно теплее. Эта штука называется "парниковым эффектом".




 Любая атмосфера является спектральным фильтром с несколькими окнами прозрачности. Она может пропускать свет строго определенного диапазона. Поскольку максимум обратного (теплового) излучения с поверхности всегда сдвинут, относительно поглощенного, в длинноволновую область, то и радиационное охлаждение (подобно голым астероидам) невозможно. Излучение от поверхности не расходится, нагревая прилегающий воздух. Для удаления тепловой энергии в космос нужен очень производительный механизм с материальным теплоносителем. В плотной части газовой оболочки планет (до стратосферы включительно) теплопередача почти целиком конвективная. Тропосфера Земли (это ниже 12-17 км) содержит 90% массы воздуха и 99% атмосферной влаги. Тепловой поток "поверхность-космос" там идет за счет механического перемещения воздушных масс. Это - предельно грубая модель процесса. Теперь, её важная деталь.




 Баланс радиационного притока энергии и конвективного оттока тепла требует быстрого вертикального движения теплоносителя. Возникает резкий перепад температуры и давления по высоте. Тепловой напор между поверхностью планеты и верхней границей тропосферы (высота 12-17 км) достаточно велик (на Земле в районе экватора от +45 градусов С на уровне моря до -70 градусов С в тропопаузе). Но, сам по себе, конвективный теплообмен всё равно не справляется с нагрузкой. Энергия тупо "застревает" в нижних слоях атмосферы. Воздух - исключительно плохой теплоноситель. В результате основная нагрузка по переносу энергии через плотные слои приземного воздуха обычно лежит на гораздо более производительном эффекте фазовых переходов, действующем параллельно с конвекционным. Атмосфера четко стратифицирована по высоте на слои, отличающиеся составом, плотностью и температурой. Двигаясь из жары в холод и обратно, часть компонентов воздушных потоков циклически меняет агрегатное состояние (испаряется, поглощая тепло, и конденсируется, его отдавая). В момент конденсации, в верхних слоях атмосферы, каждая молекула выдает квант уходящего в мировое пространство излучения. На Земле "рабочим телом" описанного теплового насоса на фазовых переходах является вода, на Венере - серная кислота, на Юпитере - аммиак.




 В разных районах планеты за счет испарения воды с поверхности и её повторного испарения в облаках (водяной аэрозоль сильно поглощает инфракрасное излучение) из тропосферы переносится в стратосферу до 10-55% интегрального потока солнечной энергии. Среднее содержание водяного пара в атмосфере Земли не превышает 0,3-0,4 %, зато энергоемкость его испарения-конденсации огромна и совокупный вклад испарения и конденсации в работе "атмосферного теплового насоса" преобладает. Так обеспечивается более 95 % теплообмена между поверхностью и стратосферой. Процесс идет круглосуточно. Он наиболее интенсивен в тропическом поясе над океанами, но заметен даже над вечными льдами во время полярной ночи. В средних широтах, за зиму, испаряется до 25-30% выпавшего снега.


  Круговорот зарядов в атмосфере [Павел Алексеевич Кучер]




 Работа описанного атмосферного механизма сопровождается своеобразными побочными эффектами. Изменение агрегатного состояния вещества резко меняет его диэлектрическую проницаемость. На границе раздела фаз всегда возникает спонтанная электризация. Происходит преобразование части тепловой энергии компонентов воздуха в электричество... Конденсация водяных паров, в холодных верхних слоях газовой оболочки, сопровождается накоплением там большого количества положительно заряженных частиц. Так возникают объемные заряды, образующие сплошной слой в верхних слоях атмосферы Земли.




 Самые верхние слои атмосферы сильно ионизированы космическим излучением и представляют собой область высокой проводимости. Результат? Заметные изменения напряженности поля над любой точкой поверхности планеты сопровождаются быстрым перераспределением зарядов в стратосфере и ионосфере. Поэтому, средняя напряженность атмосферного поля по всей планете почти стабильна.




 Электрическое поле самых нижних слоев атмосферы, тем не менее, очень изменчиво. Оно связано с взвешенными в воздухе мельчайшими капельками воды и кристаллами льда. Свободные носители зарядов (ионы и электроны) в тропосфере почти отсутствуют. Это придает плотным слоям воздуха изоляционные свойства и препятствует саморазряду аэрозольной массы. В силу малой подвижности частиц конденсата, объемные электрические заряды (облака, струи тумана и пр.) крепко связаны с несущими турбулентными потоками и долго перемещаются с ними (часто неделями), пока не испаряются, не разряжаются на горные вершины или не выпадают на поверхность с осадками. Так "струйные" электрические токи в стратосфере и зеркально подобные им "теллурические" токи в верхних слоях земной коры. Результат?




 В атмосфере постоянно висит положительный объемный заряд величиной около 0,57 млн. кулонов. Он создает электрическое поле с уже упомянутой средней напряженностью 130 В/м. Поле пульсирует в такт вращению планеты (максимум его напряженности в 17-00, по Гринвичу, когда на солнечной стороне парит Тихий океан). Средняя разность потенциалов между поверхностью и стратосферой составляет около 400 кВ. Это есть в любом хорошем учебнике физики.




 Полный энергетический ресурс заряженной атмосферы (~ 40% интегральной мощности солнечного излучения на земной орбите) оценивается величиной около 2,5-5 на десять в седьмой степени гигаватт. Она охватывает Землю от полюса до полюса и подобна глобальной распределительной сети постоянного тока, подключенной к вечному, бесплатному и экологически чистому источнику энергии - Солнцу. Надо?




 Откуда знаю? Весь мир знает. Достаточно набрать в любом поисковике фразу - "Открытие русских ученых, закрывающая технология". Выпадет куча ссылок на очень красивый научно-популярный фильм. Авторы разработки и патент взяли. RU 2245606. Он тоже свободно в сети выложен. Кто хочет - тот найдет. Я сильно подозреваю, что, например, глава РАО ЕЭС Чубайс ничего подобного знать не желает. Зачем ему "бесплатное электричество с неба"? Да ещё навалом, в объеме на 3-4 порядка превышающем потребность человечества в энергии вообще? Угум, вот и я говорю - грустно. А президенту оно тем более не нужно, так как ставит крест на России, как "энергетической сверхдержаве"... При избытке дарового электричества - нефть с газом никому в мире не нужны. Тьфу...




 Между прочим, идея получения электрической энергии из атмосферы очень старая. Согласно вполне достоверным сведениям, подтвержденным археологическими раскопками, с конструкциями, похожими на современные громоотводы экспериментировали ещё в Древнем Египте. Позднее, в Эпоху Возрождения, это была любимая игрушка многих ученых. Приблизительно с XVII века и по XIX век (а в некоторых случаях, вплоть до первой трети XX века) атмосферное электрическое поле являлось основным (единственным), источником высокого и сверхвысокого напряжения в лабораториях небогатых естествоиспытателей.




 Мощные электростатические генераторы с механическим приводом всегда стоили дорого. Их мог себе позволить не каждый. Первый простенький генератор построил в 1663 году целый бургомистр Магдебурга, Отто фон Герике. Увы, даже через сто лет, например, у М. Ломоносова в Московском университете или у Б. Франклина, в Америке, собственных таких генераторов просто не было. И? Для получения электричества из атмосферы они применяли всякие приспособления, сходные по конструкции с громоотводами. В разрыв цепи, между поднятым в воздух электродом и заземлителем, включали электрические нагрузки, накопители энергии (батареи конденсаторов), экспериментальное оборудование.




 Иногда для подъема приемного электрода на достаточную высоту использовался воздушный змей или аэростат, чаще башни или возвышения. Народ ловчил. В качестве элементов защиты уже тогда применяли регулируемые сопротивления (Б. Франклин рекомендовал в этом качестве длинные отрезки особым образом приготовленной мокрой веревки), плавкие проволочные вставки и воздушные разрядники. Действовали эти городушки только в теплое время года, да и то эпизодически, перед грозой или уже во время грозы, то есть считанные минуты. При ясном небе они вообще не работали. С приближением к установке грозовой тучи, напряженность атмосферного электрического поля многократно возрастала. На конце молниеотвода при этом загорался коронный разряд и громоотвод временно превращался в высоковольтный источник тока.




 Несмотря на примитивность, их техника развивала значительную мощность. Судя по воспоминаниям, энергия полученных разрядов измерялась десятками килоджоулей. Атмосферным электричеством плавили металлы, дробили камни, испаряли жидкости, даже жарили мясо. Правил безопасного обращения с высоким напряжением, естественно, ещё не существовало. Частенько происходили несчастные случаи. Лаборатории горели и взрывались. Экспериментаторы гибли. У опытов с электричеством возникла скверная репутация. Работать с постоянным током высокого напряжения вообще трудно. Подходящая для этого элементная база появилась только в середине ХХ века. Первая линия электропередачи постоянного тока напряжением 100 кВ, например, была пущена в эксплуатацию только в 1944 году (опытный участок Мисбург-Лерте). От великой нужды, под американскими бомбами. Немцы пытались найти замену воздушным ЛЭП. Многие важные проблемы в указанной области техники не решены до сих пор. Понимаете? Теперь нам придется...




 Возвращаемся к тому, с чего начали. Есть палка. На палке - изолированный провод к самой вершине. На конце провода - ионизатор воздуха. Да всё равно, какой... Абсолютно без разницы... Коронный разряд, накаленная проволочка, язык открытого пламени, кусок радиоактивного изотопа... Главное, что бы вокруг этого возвышенного проводника, назовем его "приемником", в атмосфере постоянно создавался избыток ионов. Свободных носителей зарядов. Ага, вижу, начинает доходить...




 Воздух - субстанция подвижная. Если заряд покинул проводник и вырвался в атмосферу, то дальше его судьба нам безразлична. Поле электрическое, само собой, его по правильному адресу утащит. А раз есть поток зарядов, то в цепи течет электрический ток. Ну да, через воздух... Сила этого тока зависит только от производительности ионизатора. Сколько он ежесекундно носителей зарядов за пределы металла выбросит, столько кулонов электричества через этот проводник и протечет. Какое ещё сопротивление воздуха? А нет его, практически. Можно считать равным нулю. Всё равно, как подключились к стратосфере напрямую, все 400 киловольт небесного напряжения, висящих над головой, у нас словно бы сидят на конце громоотвода...




 Непонятно? Ох, ребята и девчата, какие же вы все... Ладно, поясняю насчет сопротивления воздуха. От противного... Знаете, что такое заземление? Ну да, железный штырь, вбитый в грунт, для отвода тока от защищаемого оборудования. Если туда что попало - всё "замкнет" на землю и пропадет в земле безопасно. Теперь вопрос на засыпку. Какую величину имеет сопротивление заземления? Ну да, если взять парочку одинаковых заземлений, измерить сопротивление между ними и разделить надвое, как раз получим нужную величину. Так сколько? А вот и нет! Хорошее заземление должно иметь сопротивление порядка Ома. Да-с. В любом грунте, даже в сухом песке или скальной породе. А не волнует, сопротивление материала. Во-во... Главное - обеспечить хороший контакт с объемом пускай и плохо проводящего материала. Земля-то - она большая. Следовательно, сопротивление Земли стремится к нулю, а все потери на сопротивление - только в точке контакта с землей. Там, где носители зарядов движутся достаточно плотно. И - всё проблемы решены. Площадь сечения самого плохого "проводника", при растекании тока в объеме, с удалением от заземлителя, возрастает, как квадрат расстояния. В геометрической прогрессии... Очень быстро. И так же быстро падает его электрическое сопротивление. С непривычки - кажется парадоксом...




 Когда на верхнем конце нашего "атмосферного генератора" работает ионизатор, его сопротивление, относительно атмосферы, тоже стремится к нулю. Точнее, пренебрежимо мало. Объемный эффект, как и в случае заземления в грунте. Сила тока в цепи зависит только от производительности ионизатора.. Удобно...




 Нет, горелку на верхний конец токоприемника мы громоздить не будем. И петарду - не будем. И куска радиоактивного элемента у нас нет. Оно и к лучшему, кстати... При разряде, в газовой среде, электроды теряют вес. На каждый ампер-час протекшего через газ заряда плазмой распыляется примерно кубический сантиметр материала электрода. Состав его значения не имеет. Нету стойких к плазмо-химии материалов... Хоть вольфрам ставь, хоть кремний, хоть графит. Всё горит и окисляется. Догадались? Если поставить на верхушку радиоактивный источник, то атмосферная коррозия его скоренько разъест до дыр и вся гадость распылится в окружающей среде, осядет вокруг тонким равномерным слоем. Оно нам надо? Живите проще.




 Расходным набалдашником для приемника атмосферного тока, на всех громоотводах, ставят простое, экологически чистое железо. От него, кроме ржавчины, никакого вреда. Мы тоже, не будем, от коллектива отрываться... Как заставить банальную железяку испускать в воздух ионы плазмы? Есть такой способ!




 Считаем площадь грунта, которую экранирует от атмосферного электрического поля штырь высотой, например, двадцать метров. Ага, вот эта самая сосенка, которую мы под стойку приемника назначили. Пи умноженное на "эр квадрат", так? Здесь "эр" - радиус площадки и высота подъема приемника. Итог - 1256 квадратных метров.




 Теперь находим площадь приемного электрода, при заданных условиях достаточную для зажигания на нем коронного разряда в ясную безоблачную погоду. Это тоже просто. Напряженность поля в короне около 30 кВ/см или 3 МВ/м. Напряженность поля над ровной землей - 130 В/м. Считаем пропорцию... Примерно 500 квадратных сантиметров оголенного металла, шарик, диаметром 12-13 сантиметров, на верхотуре, уже будет окружен слабым облаком из ионизированных молекул воздуха... Если взять стержень потоньше, то и коронный разряд вокруг него будет соразмерно сильнее. Просто?




 Не просто... Скорость движения свободных ионов в воздухе, при атмосферном давлении, измеряется сантиметрами в секунду. Вершину токоприемника окутает малоподвижное облачко лениво дрейфующих ионов и разряд стабилизируется, на пороге зажигания. Как это, собственно, происходит с любым реальным громоотводом. Что-то, потихоньку, вечно утекает через него в атмосферу, но этот ток почти незаметен. Его последствия можно обнаружить только косвенно, по неестественной гладкости поверхности металла. Все неровности там словно отполированы. Реально. Выступы и заусенцы тихий разряд "съедает" первыми. По аналогичной причине так ровно "подстрижена" травка на всех высокогорных "альпийских лугах". Поле атмосферного электричества в горах сильное. На каждой травинке, торчащей чуть выше остальных, может, в непогоду, загореться "корона" электрического разряда. Враз подровняет "выскочку" до уровня соседей.




 Вывод? Если нужен сильный разряд, то нужно "острие". Не простое, неподвижное, а мотающееся по ветру, обдуваемое напором воздуха. Стальная фольга (в идеале) или металлизированная бумага, от влаги покрытая лаком. Длинная полоса такой фольги сейчас и трепещет на ветру. Тает, тает, тает... Расходник! А регулировка тока очень простая - положением опоры. Наклонили пониже - поле разряда ослабло. Подняли повыше - усилилось. Голь на выдумки хитра...




 Поскольку земля заряжена относительно атмосферы отрицательно, а корпус установки заземлен, то на центральном электроде цементной трубы напряжение положительное. Равное с потенциалом на "приемнике". При остановках процесса эту высоковольтную деталь замыкают на корпус заземленным стальным штырем. Несколько десятков киловольт таки там присутствует. Простейший пример использования атмосферного генератора "напрямую", в качестве готового источника питания "электрофильтра". Никаких тебе согласующих устройств, никаких преобразователей. На одной стороне цепи горит коронный разряд вокруг плещущего на ветру "приемника электричества", с другой - горит коронный разряд в трубе, по которой из реактора несется пыльный газ. От центрального электрода (колючей проволоки) поток ионов продирается к окружающим заземленным стенкам. На пути он заряжает частицы цемента и они дрейфуют туда же, после разряда оседают на металле. Труба дрожит, цемент скользит по спиральной дорожке в накопитель. И ничего больше не надо. Всю конденсированную фракцию "корона" выметает из газа как невидимой метлой. Очень просто и чисто, ага... Регулировка напряжения и тока - наклоном (высотой подъема) штанги "приемника". Сколько точно напряжения в цепи - никто не знает. Желающих измерить не нашлось. Да и зачем? По выхлопному отверстию трубы видно... Если выходящий газ чист от пыли - всё работает нормально. Как только появились клубы - задирай стойку повыше. Разряд не справляется... А начали звонко щелкать в железной трубе искры пробоев - опускай пониже. Или... пни реактор сапогом, помоги вибрации сбить со стенок цементный налет. Элементарно... Уже привыкли. Люди, они ко всему привыкают.




 Ясное дело, высокое напряжение смертельно опасно. И что? Пример товарища Рихмана другим наука. Соблюдайте правила техники безопасности! Они простые, на самом деле. Допуск на работу с напряжением выше 1000 вольт наши ребята имеют все. Научили! Через "не могу и не хочу". Поголовно. Без отговорок. С электричеством, как и с огнестрельным оружием, шутки плохи. Бьет жизнь шутников, смертным боем...


  Электричество из атмосферы [Павел Алексеевич Кучер]

Установки для получения электричества из атмосферы

Источник







  • 1
все новое хорошо забытое старое)))скоро изобретут статическую зажигалку.
цеппелин им в помощь)

А то ещё будут набор продавать из двух палочек и верёвки с инструкцией) Тоже зажигалка, нью эйдж)

думаю, что технологии природного электричества экономически дороже и сложнее. пока не время.

Что значит „экономически дороже”? Палки есть? Верёвка есть? Технология? Так при чём тут экономика?

Это нас так заставляют думать, что без денег ничего создать нельзя. А ведь по большому счёту деньги сегодня - нолики в компьютере. Не могут они оказывать решающего влияния на создание новых технологий!

Вот! вы абсолютно правы- нас заставляют думать посредством разных манипуляций.
то-то я замечаю в сети массовые посредственные и поверхностные утверждения каких-то фантастических идей без глубокого анализа и всестороннего изучения, элементарного логического рассуждения.

"Полный энергетический ресурс заряженной атмосферы (~ 40% интегральной мощности солнечного излучения на земной орбите)"

А сколько %% из них простыми и сравнительно безопасными ветряками снять можно?
Чем данное изобретение теоретически лучше ветряков?

Возможность вызывания дождей хвойными лесополосами 40*40*2000 м - очень мала.


Кучер достал своими лозунгами, что платят за энергию только лохи.

вот его извробредение обкакивали:

"посчитайте плотность энергии и годовую выработку с установки, объемом 100м^3.
Не хотите считать? Просто прикиньте. И сравните, сколько можно снять ветряками с того же объема."

тут практические попытки повтора: http://www.data-chip.ru/viewtopic.php?t=9147

Но афтор тупо графоманит и платит за электричество, как идиот.

Кучер П.А.> Идиоты имеют право знать, что они идиоты и всю жизнь платят деньги за то, что бесплатно болтается у них над головой.

Аффтар патента сам платит за сетевое электричество, сколько мегарублей в течение жизни ему уже начислено обычными энергетиками?

Пока он ждёт с неба 3 млн. долларов на НИОКР, но без них можно было промоделировать процессы "взятия милостей от природы" сначала в компьютере.
Чего не могли сделать прошловековые учёные.

Вот энтузиасты за 1,5 млн. руб собранных с миру по нитке как стараются:

https://sites.google.com/site/globalenergytrans/status


Edited at 2014-05-15 16:52 (UTC)

(Удалённый комментарий)
Очень интересно, есть ли еще материалы на эту тему?

Конечно, пройдите по ссылке в конце поста!

Ну так что, построили уже свою электростанцию? Выкладывайте фотки. Или палок-верёвок еще не насобирали?...

Я в восхищении! До конца, правда, еще не осилила

О, сколько нам открытий чудных....)

Если взять шар из метала и внутрь поместить источник ионизации, то мы получим простой конденсатор с одной обкладкой . как бы это пародоксально не звучало.
Внутри имеем заряд + , а с наружи будет знак минус причем не факт , что будет равен уровню земли, возможно больше.
шар и излучение

Всё тоже самое только без вакуума. Нам 200кВ не нужно.
Хотя довольно интересно нужно подумать. Спасибо.

(Анонимно)
Устройства для сбора электричества из атмосферы, как правило, дают высокое напряжение при весьма малом токе, поэтому необходимы преобразующие устройства для получения низкого напряжения при значительном токе. Это может сделать трансформатор, но он работает только на переменном токе, а ток из атмосферы — постоянный. Способ преобразования высокого постоянного напряжения в низкое переменное предложил еще Никола Тесла в 1890-х годах.

Идея сводилась к зарядке конденсатора, и разряду его через искровой промежуток на катушку с большим числом витков. Разряд носил колебательный характер, а катушка могла быть обмоткой понижающего трансформатора. Эту идею и развил Плаусон( Конвертер Плаусона). В своем патенте он начинает с пояснения, как можно понизить напряжение обычной электростатической машины.

В заключение заметим, что описанные грандиозные устройства так и не получили широкого практического применения ввиду их громоздкости, непрактичности, а самое главное, нестабильности снимаемой мощности, которая целиком зависит от «электрической погоды» в атмосфере

эдектричество

"В заключение заметим, что описанные грандиозные устройства так и не получили широкого практического применения ввиду их громоздкости, непрактичности, а самое главное, нестабильности снимаемой мощности, которая целиком зависит от «электрической погоды» в атмосфере"
А как же "Т-статик" в Швейцарском селе, обслуживающем все потребности жителей в электро-энергии?
"Лейтенская банка" хорошо, да славяне запантентовали "конденсатор" из обычной перегоревшей электро-лампы: на колбе стоит всего-лишь осадить плёнку серебра (школьная химия) и накопитель зарядов огромной ёмкости в наших руках!
Прошу ознакомить ся с работами Рыбникова Ю.С. по "Теория единого электрического поля.", в которой автором доказано отсутствие в природе отрицательных зарядов. В природе присутствует разность насыщения положительных зарядов, что и вызывает течение токов, таким же естественным образом, как и стремление уравновешивания давлений в атмосферной среде, течение воды или "выталкивающая сила".
Расширение: "Новая электрическая машина" Лиманского с кпд 150% в кустарном варианте!
Р.S. Длагодарю автора статьи за данную тему.

Постоянный ток

(Анонимно)
Насколько я знаю - постоянный ток очень вреден.У нас все, кто работал с постоянным током умерли от рака.Также очень действует на сердце.Что скажете? Есть данные?

Re: Постоянный ток

Не могу знать. Наверно, всё от дозы зависит. Говорят, что переменный и без рака убить может.

Тебя у меня во всю Электромеханик пиарит, грит, иди, Собакен, учись умаразму.
Ну зашёл.
...
Ты эта... поправил бы принцип работы молниеотводов, а то стыдно немного за автора писанинки.
...
Дальше читать не стал, прости, если автор не понимает азов, то как бы нечего на него время тратить ой.

Не стоит извинений. Второй раз за два месяца получаю вопиющее доказательство того, что читающая жж публика... ммм... какбы сказать помягче... пусть так - за четыре года с момента публикации поста только нещасный Собакен попросил поправить.

  • 1