мера1

ss69100


К чему стадам дары свободы...

Восстановление смыслов


Предыдущий пост Поделиться Следующий пост
О запуске советской ракеты в сторону Луны (2)
мера1
ss69100




КОМПЛЕКС ИЗМЕРИТЕЛЬНЫХ СРЕДСТВ


Для наблюдения за полетом космической ракеты, измерения параметров ее орбиты и приема с борта данных научных измерений был использован большой комплекс измерительных средств, расположенных по всей территории Советского Союза.

В состав измерительного комплекса входили: группа автоматизированных радиолокационных средств, предназначенных для точного определения элементов начального участка орбиты; группа радиотелеметрических станций для регистрации научной информации, передаваемой с борта космической ракеты; радиотехническая система контроля элементов траектории ракеты на больших удалениях от Земли; радиотехнические станции, используемые для приема сигналов на частотах 19,997, 19,995 и 19,993 мгц; оптические средства для наблюдения и фотографирования искусственной кометы.

Согласование работы всех измерительных средств и привязка результатов измерений к астрономическому времени производились с помощью специальной аппаратуры единого времени и систем радиосвязи.

Обработка данных траекторных измерений, поступающих из районов расположения станций, определение элементов орбиты и выдача целеуказаний измерительным средствам выполнялись координационно-вычислительным центром на электронных счетных машинах.


Автоматизированные радиолокационные станции использовались для оперативного определения начальных условий движения космической ракеты, выдачи долгосрочного прогноза о движении ракеты и данных целеуказаний всем измерительным и наблюдательным средствам. Данные измерений этих станций с помощью специальных счетно-решающих устройств преобразовывались в двоичный код, осреднялись, привязывались к астрономическому времени с точностью до нескольких миллисекунд и автоматически выдавались в линии связи.

Чтобы предохранить данные измерений от возможных ошибок при передаче по линиям связи, измерительная информация кодировалась. Применение кода позволяло находить и исправлять одну ошибку в передаваемом числе и находить и отбрасывать числа с двумя ошибками.

Преобразованная таким образом измерительная информация поступала в координационно-вычислительный центр. Здесь данные измерений с помощью входных устройств автоматически набивались на перфокарты, по которым электронные счетные машины производили совместную обработку результатов измерений и расчет орбиты. На основе использования большого числа траекторных измерений в результате решения краевой задачи с применением метода наименьших квадратов определялись начальные условия движения космической ракеты. Далее интегрировалась система дифференциальных уравнений, описывающая совместное движение ракеты, Луны, Земли и Солнца.

Телеметрические наземные станции производили прием научной информации с борта космической ракеты и ее регистрацию на фотопленках и магнитных лентах. Для обеспечения большой дальности приема радиосигналов были применены высокочувствительные приемники и специальные антенны с большой эффективной площадью.

Приемные радиотехнические станции, работающие на частотах 19,997, 19,995, 19,993 мгц, осуществляли прием радиосигналов с космической ракеты и регистрацию этих сигналов на магнитных пленках. При этом производились измерения напряженности поля и ряд других измерений, позволяющих проводить ионосферные исследования.

Изменением вида манипуляции передатчика, работающего на двух частотах 19,997 и 19,995 мгц, передавались данные о космических лучах. По каналу передатчика, излучающего на частоте 19,993 мгц, путем изменения длительности интервала между телеграфными посылками передавалась основная научная информация.

Для оптического наблюдения космической ракеты с Земли с целью подтверждения факта прохождения космической ракеты по данному участку ее траектории была использована искусственная натриевая комета. Искусственная комета была образована 3 января в 3 часа 57 минут по московскому времени на расстоянии 113 тысяч километров от Земли. Наблюдение искусственной кометы было возможно из районов Средней Азии, Кавказа, Ближнего Востока, Африки и Индии. Фотографирование искусственной кометы производилось с помощью специально созданной оптической аппаратуры, установленной на южных астрономических обсерваториях Советского Союза. Для повышения контрастности фотографических отпечатков использовались светофильтры, выделяющие спектральную линию натрия. С целью повышения чувствительности фотографической аппаратуры ряд установок был оборудован электронно-оптическими преобразователями.

Несмотря на неблагоприятную погоду в большинстве районов расположения оптических средств, ведущих наблюдение за космической ракетой, удалось получить несколько фотографий натриевой кометы.

Контроль орбиты космической ракеты вплоть до расстояний 400-500 тысяч километров и измерение элементов ее траектории производились с помощью специальной радиотехнической системы, работающей на частоте 183,6 мгц.

Данные измерений в строго определенные моменты времени автоматически выводились и фиксировались в цифровом коде на специальных устройствах.

Вместе со временем, в которое производился съем показаний радиотехнической системы, эти данные оперативно поступали в координационно-вычислительный центр. Совместная обработка указанных измерений вместе с данными измерений радиолокационной системы позволяла уточнять элементы орбиты ракеты и непосредственно контролировать движение ракеты в пространстве.

Использование мощных наземных передатчиков и высокочувствительных приемных устройств обеспечивало уверенное измерение траектории космической ракеты до расстояний порядка 500 тысяч километров.

Применение указанного комплекса измерительных средств позволило получить ценные данные научных наблюдений и надежно контролировать и прогнозировать движение ракеты в космическом пространстве.

Богатый материал траекторных измерений, выполненных при полете первой советской космической ракеты, и опыт автоматической обработки траекторных измерений на электронных счетных машинах будут иметь большое значение при запусках последующих космических ракет.





НАУЧНЫЕ ИССЛЕДОВАНИЯ

Изучение космических лучей




Одной из главных задач научных исследований, проводимых на советской космической ракете, является изучение космических лучей.

Состав и свойства космического излучения на больших расстояниях от Земли определяются условиями возникновения космических лучей и структурой космического пространства. До настоящего времени сведения о космических лучах были получены путем измерения космических лучей вблизи Земли. Между тем, в результате действия целого ряда процессов состав и свойства космического излучения у Земли резко отличаются от того, что присуще самим «истинным» космическим лучам. Наблюдаемые на поверхности Земли космические лучи мало похожи на те частицы, которые приходят к нам из космоса.

При использовании высотных ракет и в особенности спутников Земли на пути космических лучей из космоса к измерительному прибору уже нет существенного количества вещества. Однако Земля окружена магнитным полем, которое частично отражает космические лучи. С другой стороны, это же магнитное поле создает своеобразную ловушку для космических лучей. Один раз, попав в эту ловушку, частица космических лучей блуждает там в течение очень долгого времени. В результате этого вблизи Земли накапливается большое число частиц космического излучения.

До тех пор, пока измеряющий космическое излучение прибор находится в сфере действия магнитного поля Земли, результаты измерений не дадут возможности изучать космические лучи, приходящие из Вселенной. Известно, что среди частиц, присутствующих на высотах порядка 1000 километров, лишь ничтожная часть (около 0,1 процента) приходит непосредственно из космоса. Остальные 99,9 процента частиц возникают, по-видимому, от распада нейтронов, испускаемых Землей (точнее, верхними слоями ее атмосферы). Эти нейтроны в свою очередь создаются космическими лучами, бомбардирующими Землю.

Лишь после того, как прибор будет находиться не только вне атмосферы Земли, но и вне магнитного поля Земли, можно выяснить природу и происхождение космических лучей.

На советской космической ракете установлены разнообразные приборы, позволяющие всесторонне изучать состав космических лучей в межпланетном пространстве.

С помощью двух счетчиков заряженных частиц определялась интенсивность космического излучения. С помощью двух фотоумножителей с кристаллами исследовался состав космических лучей.

Для этой цели измерялись:

1. Поток энергии космического излучения в широком диапазоне энергий.

2. Число фотонов с энергией выше 50 000 электрон-вольт (жесткие рентгеновские лучи).

3. Число фотонов с энергией выше 500 000 электрон-вольт (гамма-лучи).

4. Число частиц, обладающих способностью проходить сквозь кристалл йодистого натрия (энергия таких частиц больше 5000 000 электрон-вольт).

5. Суммарная ионизация, вызываемая в кристалле всеми видами излучения.

Счетчики заряженных частиц давали импульсы на специальные так называемые пересчетные схемы. С помощью таких схем оказывается возможным передать по радио сигнал — тогда, когда сосчитано определенное число частиц.

Фотоумножители, соединенные с кристаллами, регистрировали вспышки света, возникающие в кристалле при прохождении сквозь них частиц космического излучения. Величина импульса на выходе фотоумножителя в известных пределах пропорциональна количеству света, излученному в момент прохождения частицы космических лучей внутри кристалла. Эта последняя величина в свою очередь пропорциональна той энергии, которая была истрачена в кристалле на ионизацию частицей космических лучей. Выделяя те импульсы, величина которых больше определенного значения, можно исследовать состав космического излучения. Наиболее чувствительная система регистрирует все случаи, когда энергия, выделенная в кристалле, превосходит 50 000 электрон-вольт. Однако проникающая способность частиц при таких энергиях очень мала. В этих условиях в основном будут регистрироваться рентгеновские лучи.

Счет числа импульсов осуществляется с помощью таких же пересчетных схем, которые были использованы для счета числа заряженных частиц.

Аналогичным образом выделяются импульсы, величина которых соответствует энерговыделению в кристалле более 500 000 электрон-вольт. В этих условиях в основном регистрируются гамма-лучи.

Путем выделения импульсов еще большей величины (соответствующих энерговыделению более 5 000 000 электрон-вольт) отмечаются случаи прохождения сквозь кристалл частиц космических лучей, обладающих большой энергией. Следует отметить, что заряженные частицы, входящие в состав космических лучей и летящие практически со скоростью света, будут проходить сквозь кристалл. При этом энерговыделение в кристалле в большинстве случаев будет равно примерно 20 000 000 электрон-вольт.

Помимо измерения числа импульсов, производится определение суммарной ионизации, создаваемой в кристалле всеми видами излучений. Для этой цели служит схема, состоящая из неоновой лампочки, конденсатора и сопротивлений. Эта система позволяет путем измерения числа зажиганий неоновой лампочки определять суммарный ток, текущий через фотоумножитель, и тем самым измерять суммарную ионизацию, создаваемую в кристалле.

Исследования, проведенные на космической ракете, дают возможность определить состав космических лучей в межпланетном пространстве.





Изучение газовой составляющей межпланетного вещества и корпускулярного излучения Солнца




До недавнего времени предполагалось, что концентрация газа в межпланетном пространстве весьма мала и измеряется единицами частиц в кубическом сантиметре. Однако некоторые астрофизические наблюдения последних лет поколебали эту точку зрения.

Давление солнечных лучей на частицы самых верхних слоев земной атмосферы создает своеобразный «газовый хвост» Земли, который направлен всегда от Солнца. Свечение его, которое проектируется на звездный фон ночного неба в виде противосияния, называется зодиакальным светом. В 1953 году были опубликованы результаты наблюдений поляризации зодиакального света, которые привели некоторых ученых к выводу о том, что в межпланетном пространстве в районе Земли содержится около 600-1000 свободных электронов в кубическом сантиметре. Если это так, и так как среда в целом электрически нейтральна, то в ней должны содержаться и положительно заряженные частицы с такой же концентрацией. При некоторых предположениях из указанных поляризационных измерений была выведена зависимость электронной концентрации в межпланетной среде от расстояния до Солнца, а следовательно, и плотность газа, который должен быть полностью или почти полностью ионизирован. Плотность межпланетного газа должна убывать по мере увеличения расстояния от Солнца.

Другим опытным фактом, говорящим в пользу существования межпланетного газа с плотностью порядка 1000 частиц в кубическом сантиметре, является распространение так называемых «свистящих атмосфериков» — низкочастотных электромагнитных колебаний, вызываемых атмосферными электрическими разрядами. Для объяснения распространения этих электромагнитных колебаний от места их возникновения к месту, где они наблюдаются, приходится предполагать, что они распространяются по силовым линиям магнитного поля Земли, на расстояниях восьми-десяти земных радиусов (т. е. порядка 50-65 тысяч километров) от поверхности Земли, в среде с электронной концентрацией порядка тысячи электронов в 1 кубическом сантиметре.

Однако выводы о существовании в межпланетном пространстве столь плотной газовой среды отнюдь не являются бесспорными. Так, ряд ученых указывает на то, что наблюдаемая поляризация зодиакального света может вызываться не свободными электронами, а межпланетной пылью. Высказываются предположения о том, что в межпланетном пространстве газ присутствует только в виде так называемых корпускулярных потоков, т. е. потоков ионизированного газа, выбрасываемых с поверхности Солнца и движущихся со скоростью 1000-3000 километров в секунду.

По-видимому, при современном состоянии астрофизики вопрос о природе и концентрации межпланетного газа нельзя решить с помощью наблюдений, проводимых с поверхности Земли. Эта проблема, имеющая большое значение для выяснения процессов обмена газом между межпланетной средой и верхними слоями земной атмосферы и для изучения условий распространения корпускулярного излучения Солнца, может быть решена с помощью приборов, устанавливаемых на ракетах, движущихся непосредственно в межпланетном пространстве.

Целью установки приборов для изучения газовой составляющей межпланетного вещества и корпускулярного излучения Солнца на советской космической ракете является проведение первого этапа подобных исследований — попытки прямого обнаружения стационарного газа и корпускулярных потоков в области межпланетного пространства, находящейся между Землей и Луной, и грубой оценки концентрации заряженных частиц в этой области. При подготовке эксперимента на основании имеющихся в настоящее время данных принимались в качестве наиболее вероятных две следующие модели межпланетной газовой среды:

А. Имеется стационарная газовая среда, состоящая в основном из ионизированного водорода (т. е. из электронов и протонов — ядер водорода) с электронной температурой 5000-10 000°К (близкой к ионной температуре). Через эту среду временами проходят корпускулярные потоки со скоростью 1000-3000 километров в секунду с концентрацией частиц 1-10 в кубическом сантиметре.

Б. Имеются только спорадические корпускулярные потоки, состоящие из электронов и протонов со скоростями 1000-3000 километров в секунду, иногда достигающие максимальной концентрации 1000 частиц в кубическом сантиметре.

Эксперимент проводится с помощью протонных ловушек. Каждая протонная ловушка представляет собой систему из трех концентрически расположенных полусферических электродов с радиусами 60 мм, 22,5 мм и 20 мм. Два внешних электрода изготовлены из тонкой металлической сетки, третий — сплошной, служит коллектором протонов.

Электрические потенциалы электродов относительно корпуса контейнера таковы, что электрические поля, образуемые между электродами ловушки, должны обеспечить как полное собирание всех протонов и выталкивание электронов, попадающих в ловушку из стационарного газа, так и подавление фототока с коллектора, возникающего под действием ультрафиолетового излучения Солнца и других излучений, действующих на коллектор.

Разделение протонного тока, создаваемого в ловушках стационарным ионизированным газом и корпускулярными потоками (если они существуют совместно), осуществляется одновременным использованием четырех протонных ловушек, отличающихся друг от друга тем, что у двух из них на оболочки (внешние сетки) подан положительный потенциал, равный 15 вольтам относительно оболочки контейнера.

Этот тормозящий потенциал препятствует попаданию в ловушку протонов из стационарного газа (имеющих энергию порядка 1 электрон-вольта), но не может помешать попаданию на коллектор протонов корпускулярных потоков, обладающих гораздо большими энергиями. Две остальные ловушки должны регистрировать суммарные протонные токи, создаваемые как стационарными, так и корпускулярными протонами. Внешняя сетка у одной из них находится под потенциалом оболочки контейнера, а у другой имеется отрицательный потенциал, равный 10 вольтам относительно той же оболочки.

Токи в цепях коллекторов после усиления регистрируются с помощью радиотелеметрической системы.





Исследование метеорных частиц




Наряду с планетами и их спутниками, астероидами и кометами в солнечной системе присутствует большое количество мелких твердых частиц, движущихся относительно Земли со скоростями от 12 до 72 километров в секунду и называемых в комплексе метеорным веществом.

К настоящему времени основные сведения о метеорном веществе, вторгающемся в земную атмосферу из межпланетного пространства, получены астрономическими, а также радиолокационными методами.

Сравнительно крупные метеорные тела, влетая с огромными скоростями в атмосферу Земли, сгорают в ней, вызывая свечение, наблюдаемое визуально и при помощи телескопов. Более мелкие частицы прослеживаются радиолокаторами по следу заряженных частиц — электронов и ионов, образующихся при движении метеорного тела.

На основании этих исследований получены данные о плотности метеорных тел вблизи Земли, их скорости и массе от 10~4 грамма и больше.

Данные о мелких и самых многочисленных частицах с поперечником в несколько микрон получаются из наблюдения рассеяния солнечного света лишь на огромном скоплении таких частиц. Исследование индивидуальной микрометеорной частицы возможно только при помощи аппаратуры, установленной на искусственных спутниках Земли, а также на высотных и космических ракетах.

Изучение метеорного вещества имеет существенное научное значение для геофизики, астрономии, для решения проблем эволюции и происхождения планетных систем.

В связи с развитием ракетной техники и началом эры межпланетных полетов, открытой первой советской космической ракетой, изучение метеорного вещества приобретает большой чисто практический интерес для определения метеорной опасности для космических ракет и искусственных спутников Земли, находящихся длительное время в полете.

Метеорные тела при соударении с ракетой способны производить на нее разного рода воздействия: разрушить ее, нарушить герметичность кабины, пробив оболочку. Микрометеорные частицы, длительное время воздействуя на оболочку ракеты, могут вызвать изменение характера ее поверхности. Поверхности оптических приборов в результате столкновения с микрометеорными телами могут превращаться из прозрачных в матовые.

Как известно, вероятность столкновения космической ракеты с метеорными частицами, способными повредить ее, мала, но она существует, и важно правильно оценить ее.

Для исследования метеорного вещества в межпланетном пространстве на приборном контейнере космической ракеты — установлены два баллистических пьезоэлектрических датчика из фосфата аммония, регистрирующие удары микрометеорных частиц. Пьезоэлектрические датчики превращают механическую энергию ударяющей частицы в электрическую, величина которой зависит от массы и скорости ударяющей частицы, а число импульсов равно числу частиц, сталкивающихся с поверхностью датчика.

Электрические импульсы сдатчика, имеющие вид кратковременных затухающих колебаний, подаются на вход усилителя-преобразователя, разделяющего их на три диапазона по амплитуде и подсчитывающего число импульсов в каждом амплитудном диапазоне.





Магнитные измерения




Успехи советской ракетной техники открывают перед геофизиками большие возможности. Космические ракеты позволят производить непосредственные измерения магнитных полей планет специальными магнитометрами или обнаруживать поля планет благодаря их возможному влиянию на интенсивность космического излучения непосредственно в пространстве, окружающем планеты.

Полет советской космической ракеты с магнитометром в сторону Луны является первым таким экспериментом.

Помимо исследования магнитных полей космических тел, громадное значение имеет вопрос об интенсивности магнитного поля в космическом пространстве вообще. Напряженность магнитного поля Земли на расстоянии 60 земных радиусов (на расстоянии лунной орбиты) практически равна нулю. Есть основания полагать, что магнитный момент Луны невелик. Магнитное поле Луны, в случае однородного намагничивания, должно убывать по закону куба расстояния от ее центра. При неоднородном намагничивании интенсивность поля Луны будет убывать еще быстрее. Следовательно, оно может быть надежно обнаружено лишь в непосредственной близости от Луны.

Какова интенсивность поля в пространстве внутри орбиты Луны при достаточном удалении от Земли и Луны? Определяется ли оно значениями, вычисленными из магнитного потенциала Земли, или оно зависит и от других причин? Магнитное поле Земли измерено на третьем советском спутнике в диапазоне высот 230-1800 км, т. е. до 1/3 радиуса Земли.

Относительный вклад возможной непотенциальной части постоянного магнитного поля, влияние переменной части магнитного поля, будет больше на расстоянии нескольких радиусов Земли, где интенсивность ее поля уже достаточно мала. На расстоянии пяти радиусов поле Земли должно составлять примерно 400 гамм (одна гамма — 10-5 эрстед).

Установка магнитометра на борту ракеты, летящей в сторону Луны, преследует следующие цели:

1. Измерить магнитное поле Земли и возможные поля токовых систем в пространстве внутри орбиты Луны.

2. Обнаружить магнитное поле Луны.

Вопрос о том, намагничены ли, подобно Земле, планеты солнечной системы и их спутники, является важным вопросом астрономии и геофизики.

Статистическая обработка большого числа наблюдений, выполненная магнитологами с целью обнаружения магнитных полей планет и Луны по их возможному влиянию на геометрию корпускулярных потоков, выбрасываемых Солнцем, не привела к определенным результатам.

Попытка установления общей связи между механическими моментами космических тел, известных для большинства планет солнечной системы, и их возможными магнитными моментами не нашла экспериментального подтверждения в целом ряде наземных экспериментов, которые следовали из этой гипотезы.

В настоящее время наиболее часто используется в различных гипотезах происхождения магнитного поля Земли модель регулярных токов, текущих в жидком проводящем ядре Земли и вызывающих основное магнитное поле Земли. Вращение Земли вокруг оси при этом привлекается для объяснения частных особенностей земного поля.

Таким образом, согласно этой гипотезе, существование жидкого проводящего ядра является обязательным условием наличия общего магнитного поля.

О физическом состоянии внутренних слоев Луны мы знаем очень мало. До недавнего времени полагали, исходя из вида поверхности Луны, что, если даже горы и лунные кратеры имеют вулканическое происхождение, вулканическая деятельность на Луне давно окончилась и Луна вряд ли имеет жидкое ядро.

При такой точке зрения следовало бы полагать, что Луна не обладает магнитным полем, если верна гипотеза происхождения земного магнитного поля. Однако, если вулканическая деятельность на Луне продолжается, то не исключается возможность существования неоднородной намагниченности Луны и даже общей однородной намагниченности.

Чувствительность, диапазон измерения магнитометра и программа его работы для советской космической ракеты были выбраны, исходя из необходимости решения указанных выше задач. Так как ориентация измерительных датчиков относительно измеряемого магнитного поля непрерывно меняется из-за вращения контейнера и вращения Земли, для эксперимента используется трехкомпонентный магнитометр полного вектора с магнито-насыщенными датчиками.

Три взаимно перпендикулярных чувствительных датчика магнитометра закреплены неподвижно относительно корпуса контейнера на специальной немагнитной штанге длиной более метра. При этом влияние магнитных частей аппаратуры контейнера все же составляет 50-100 гамм, в зависимости от ориентации датчика. Достаточно точные результаты при измерении магнитного поля Земли могут быть получены до расстояний 4-5 ее радиусов.





* *


Научная аппаратура, установленная на борту ракеты, функционировала нормально. Получено большое количество записей результатов измерений, которые обрабатываются. Предварительный анализ показывает, что результаты исследований имеют большое научное значение. Эти результаты будут публиковаться по мере обработки наблюдений.

***



Из публикаций в "Правде".


  • 1
(Анонимно)
Не по теме, но тоже про коцмос.
Сегодня на мк увидел такую новость:" уфологи обнаружили астероид Эрос и предполагают, что на нём находится база инопланетян, которые наблюдают за нами и другое бла бла".
Конечно правители считают нас быдлом и им позволительно делать, что им угодно, но не надо нас считать полными идиотами и выставлять такое

(Анонимно)
Там опечатка.
Не Уфологи, а Урологи.

(Анонимно)
Вот, правильный подход.
Нужно сначала всё изМерить и приМериться.

Редко встретишь хорошую ,добротную научно-популярную статью в интернете.Эта исключение из правил

  • 1
?

Log in

No account? Create an account