ss69100 (ss69100) wrote,
ss69100
ss69100

Category:

Жмурки с электричеством

«Повсеместная работа электрических установок и приборов
была бы невозможна
без глубокого научного понимания природы электричества.»

(Из сборника «Шутки больших учёных»)

«В некотором царстве, в некотором государстве, долбил себе по клавишам один скромный программист. Звали его Вася Пупкин – или, там, Билли Сукинсон. Долго ли, коротко ли он долбил, но вот однажды компилятор выдал добро на программку, которая рисовала на экране монитора синие и красные шарики. Тучи синих и красных шариков. Да не простых, а с заданными свойствами.

Свойства шарики имели:
Танцевать они умели!
Только танцы шли не сами,
А – по заданной программе.

И программа та была
Остроумна, весела!

Чтобы начались эти весёлые танцы, требовалось, например, сгруппировать шарики на экране так, чтобы в одном месте доминировали синие, а в другом – красные. После чего «отпустить» их, предоставив «самим себе».

И – мама дорогая! – шарики начинали двигаться так, чтобы выровнять количества синего и красного цветов на всех местах экрана. У тех, кто наблюдал это дивное зрелище, создавалось впечатление, что шарики разного цвета притягиваются друг к другу, а шарики одинакового цвета – отталкиваются друг от друга. Но это ещё не всё!


Можно было принудительно организовать коллективное движение шариков одного цвета – например, вдоль некоторой замкнутой кривой.

И – мама дорогая! – соседние шарики, предоставленные «самим себе», старались, по возможности, компенсировать этот принудительный поток цвета. Если принудительно двигались синие шарики, то свободные красные шарики искривляли своё движение так, чтобы двигаться в попутном направлении с синим потоком, а свободные синие шарики – наоборот, во встречном.

Создавалось впечатление, что, помимо действия покоящихся шариков друг на друга, движущиеся шарики тоже действуют друг на друга. Всё логично: если статическое действие стремится устранить статическое разделение синего и красного цветов, то динамическое действие стремится компенсировать потоки синего или красного цвета.

И вот, на одном Терминале сидел Дремучий пользователь. Увидел он эти танцующие шарики – и чуть не тронулся. Играл, играл, и всё не мог наиграться. Видя только монитор и не подозревая о том, что танцы шариков обеспечиваются программой, Дремучий пользователь глубоко убедился в том, что свойства действовать друг на друга присущи самим шарикам.

Имея незаурядный пытливый ум, Дремучий пользователь стал придумывать – что же это за свойства у шариков, которые порождают силы, заставляющие шарики танцевать. Из кожи вон лез этот пользователь. Напрягал свой незаурядный пытливый ум – до пара из ушей.

Да толку-то? Жаль беднягу, зря старался. Не в свойствах шариков было дело. Из свойств у шариков был лишь цвет – синий или красный. Но это свойство не порождало никаких сил. Наличие цвета у шарика было лишь знаком для программы, которая синими шариками рулила так, а красными – этак…»

Если в этой байке под «синим и красным цветом» разуметь «отрицательный и положительный электрический заряд», а под Дремучим пользователем – ортодоксальную физическую науку, то сегодняшний уровень понимания этой наукой природы электрического заряда окажется обрисован точь-в-точь.

Неспроста авторы учебников по электричеству ловко уходят от вопроса о том, что такое электрический заряд. «Вообще говоря, это – количество электричества» - поясняют нам.

Класс! А электричество – это что? Вообще говоря, электричество – это и есть электрические заряды, да? Впрочем, авторы учебников дают одну наводку: заряд – это свойство, порождающее взаимодействие зарядов на расстоянии.

А если их спросить: «А «порождающее» - как?» - то они с облегчением разъясняют: «А так, как описывают наши замечательные математические формулы! Идите, дети, учите матчасть!»

Хотя, с некоторых пор детям стали давать подсказочку: заряды, мол, не просто действуют друг на друга на расстоянии. Заряд – он, якобы, создаёт электромагнитное поле, а уже оно-то действует на заряды.

Как, физически, «создаёт», как «действует» - это, опять же, большой-большой секрет. «Привыкайте довольствоваться малым, - поучают детей, - и полностью удовлетворяться одной лишь красотой математического аппарата!»

Этот высоконаучный подход, с железобетонно расставленными приоритетами, процветал не всегда. Фарадею и Максвеллу, например, пришлось работать в атмосфере дикого разгула плюрализма.

Любое новое научное слово вполне типично отзывалось: быстренько находились деятели, которые начинали гнуть прямо противоположную линию.

Стоило кому-то заикнуться о том, что носителями электричества являются частицы вещества, как тут же лезли умники с претензиями на то, что электричество – это независимый от вещества флюид (невесомая жидкость). Этот флюид, якобы, способен втекать в кусок вещества и, с неменьшим успехом, вытекать из него.

Электричество одного знака, мол – от избытка этого флюида, а электричество другого знака – от недостатка. Ещё более продвинутые специалисты толковали не об одном флюиде, а сразу о двух – по числу типов электричества.

И стоило кому-то вдохновиться идеей электрических флюидов и начать строить их физическую модель, как тут же подавали голос сторонники чисто описательного подхода, избегавшие физических гипотез – имеем, мол, математический инструмент для расчётов, и хорошо, а сверх этого, мол, не надо ля-ля.

Идя навстречу этим описателям, поднимали свои флаги фанаты концепции о том, что наэлектризованные тела действуют друг на друга на расстоянии непосредственно – чисто-конкретно математически.

Но тут же раздавались ехидные замечания о том, что «это – не по-физически», что для взаимодействия наэлектризованных тел на расстоянии непременно нужен посредник. Физическая модель этого посредника – чёрт с ней, обойдёмся и без неё, но сам посредник нужен позарез! Иначе – «не по-физически»!

Весь этот раздрай, что особенно пикантно, шёл ещё и по национальному признаку. Британские учёные тузили немецких – уворачиваясь при этом от пинков своих французских коллег. Потери из-за «дружественного огня» были огромны.

Стыдно сказать: такой бардак назывался у них наукой. Это – явно по чьему-то недосмотру. Вот сейчас в науке наведён тотальный порядок: то, что одобрено Министерством просвещения – то и наука, а всё остальное – это лженаука. Сегодня даже девочки с улицы могут, при желании, отличить известного учёного от известного лжеучёного.

Знал бы Максвелл, что всё так будет! Знал бы он, как обойдутся с его теорией благодарные потомки! Эти потомки так и заявляют: Максвелл, мол, создал основу теории электромагнитного поля! Дяденьки, да вы читали «Трактат об электричестве» Максвелла?

Вот же он там пишет: «Электрическое поле – это часть пространства в окрестностях наэлектризованных тел, рассматриваемая с точки зрения электрических явлений. Она может быть занята воздухом… или это может быть так называемый вакуум, из которого удалили всякое вещество…»

Как в сельском хозяйстве поле – это участок земной поверхности, так и у Максвелла поле – это участок пространства. Т.е., Максвелл вкладывал в понятие «поле» чисто геометрический смысл. Максвеллу даже в страшном сне не могло присниться, что участок пространства может быть физической реальностью и обладать физическими свойствами.

Знаменитые уравнения Максвелла – это вовсе не уравнения поля, это чисто формальные выражения для расчёта взаимодействий зарядов. Поэтому никакой физической модели поля у Максвелла не было, да и быть не могло.

Лишь в самом конце «Трактата» он добавил пару условно-пророческих слов: похоже, всё-таки существует некая среда в пространстве между электрическими зарядами, и через неё-то, мол, заряды могут взаимодействовать – тогда, возможно, полученные выше уравнения сгодятся для описания этой среды…

О, они сгодились, да ещё как! Великий Лоренц построил потрясающую физическую модель эфира. Механические натяжения и вихри в эфире подчинялись уравнениям Максвелла. Даже электроны Лоренц рассматривал как «местные модификации в состоянии эфира», подчиняющиеся тем же уравнениям!

Эта теория была единственная, которая объясняла все известные на то время явления в оптике, электромагнетизме и теплоте! Но вскоре, с подачи Эйнштейна, эфир из физики выкинули – он ему мешал страшно. Что это – конец для теории поля?

Да как посмотреть! Физически, это конец и был. А математически – это было только начало! Ведь уравнения Максвелла из физики выкидывать не стали – потому что на них и держалось всё то, что называлось эйнштейновским «принципом относительности».

Вот и канонизировали Максвелла как светоча, который записал не абы что, а уравнения поля. Максвелл от такой канонизации, небось, в гробу перевернулся – ведь теперь о поле говорили не как об участке пространства, а как о физической реальности!

Нет, окосеть можно, следя за зигзагами эволюции понятий в фундаментальной физике!

Максвелл дал чисто математический инструмент для расчётов взаимодействий зарядов. Лоренц офизичил этот подход – на основе модели эфира. Затем эфир, носитель физичности в данном вопросе, устраняют. И опять оставляют голые уравнения Максвелла.

Но теперь, словно глаза продрамши, усматривают в этих уравнениях великий физический смысл – они, дескать, описывают поле, как физическую реальность! Ладно, описывали бы хорошо. Так ведь нет!

Вот, из уравнений Максвелла строго следует, что в плоской электромагнитной волне максимумы напряжённостей электрического и магнитного полей достигаются синфазно. Во многих учебниках дан схематический «мгновенный снимок» этой волны, с двумя синфазными синусоидами – Е и Н.

Так вот, эти иллюстрации даны для тех, кто шуток не понимает. Ведь если говорить в терминах этих синусоид, Е и Н, то на опыте они сдвинуты друг относительно друга на 90о – электрическая энергия превращается в магнитную, и обратно.

Вот те раз! Это же убийственное противоречие получается! Наука его до сих пор не разрешила, она его только замалчивала изо всех своих научных сил. А то ведь узнают дети про то, что уравнения Максвелла хреново описывают «поле, как физическую реальность», и думать начнут. Дескать, что-то тут не в порядке – либо с уравнениями, либо с физической реальностью. Уравнения, говорят им – гениальные. Ну, значит, реальность – из пальца высосанная!

Ну, действительно – где она, эта физическая реальность, называемая электромагнитным полем? Кто-нибудь эту «реальность» видел? Щупал? Пробовал на вкус? Нет, во всех без исключения детекторах «электромагнитного поля» мы имеем дело только с поведением пробных заряженных частиц, и ни с чем сверх этого.

Зачем же нужны домыслы о поле? А это, видите ли, у теоретиков склад ума такой. Программное управление физической реальностью они не признают, а непосредственное взаимодействие зарядов на расстоянии их напрягает.

Выдумали, для душевного успокоения, посредника в этом взаимодействии, т.е. поле – и с тех пор в него веруют. Чем дальше в лес, тем больше дров наламывают. Чем больше вопиющих противоречий в воззрениях на поле громоздят, тем крепче в это поле веруют. Вера – это страшная сила.

Мировая практика показывает, что «человеки разумные» - это слабаки против «человеков, упёрто верующих». Только не советуем говорить верующим в поле физикам комплименты про то, как крепка их вера – а то они жутко обидятся. Потому что у них наиболее крепка вера именно в то, что их упёртая вера – это, на самом деле, проявление их разума.

Так и блещет разум в определении электрического заряда – это, мол, то, чем порождается электромагнитное поле. В таком определении есть изящный сатанинский нюанс. Если кто вздумает отрицать реальность поля, то он автоматически будет отрицать и реальность заряда. И над таким недотёпой можно будет от души поржать…

Видя, как здорово получается у этих подвижников, иные далёкие от физики дилетанты полагают, что поле – это нечто настолько обыденное, что любой желающий имеет право использовать понятие «поле» в своих рассуждениях о мироздании.

И начинают эти дилетанты толковать про «полевые формы материи». Душа – это, мол, полевая форма материи! Параллельные миры – они, мол, построены из «особых» полевых форм материи!

Ох, как не любят физики этих дилетантов, которые умничают на халяву, используя чужую интеллектуальную собственность! «Шарлатанский бред!» - кричат физики. Это понятно. У кого чего болит, тот о том и говорит…

Но вернёмся к электричеству, которое все жилы из экспериментаторов вытянуло, прежде чем стало ясно, что оно связано не с флюидами какими-то, а с частицами вещества.

Особенно здорово это прояснилось у Фарадея, в его опытах по электролизу (мы к ним ещё вернёмся), а также в ещё одной ключевой области исследований – забавах с катодными лучами. «Вышли мы все из катода!» - бодро пели эти лучи, летя в вакуумной трубке Крукса.

Что только Крукс с ними не вытворял! Прежде всего бросалось в глаза их люминесцентное действие даже на стекло трубки – облучаемые места начинали, так сказать, отсвечивать.

При внесении препятствия в поток лучей, в отсвечивании появлялась чёткая тень, свидетельствовавшая о том, что лучи летели прямолинейно. «Мельница Крукса», т.е. лёгкая крыльчатка, облучаемая по одну сторону от оси вращения, резво вертелась – даже ежу становилось понятно, что катодные лучи переносят импульс.

Сфокусированные катодные лучи нагревали и даже расплавляли кусочки вещества! В довершение, Крукс установил, что катодные лучи переносят электрический заряд и отклоняются магнитом!

На основе всего этого Крукс полагал, что катодные лучи – это поток «мельчайших элементарных частиц». Но мельче ли они атомов – и если мельче, то насколько? – это было ещё не ясно.

Некоторую ясность сюда привнёс Дж.Дж.Томсон. Он провёл классические опыты – с воздействием магнитного и электрического полей на катодные частички. И установил, что знак заряда катодных частичек точно отрицательный, а удельный заряд одной такой частички, т.е. отношение заряда к массе, на три порядка больше удельного заряда самого лёгкого иона, водорода – а эта величина была известна из опытов по электролизу.

Так, уже теплее. Но! Кабы знать по отдельности заряд и массу катодной частички – сразу стало бы ясно, что это электрон. А если знаешь только отношение заряда к массе у катодной частички – возможны варианты! Толку-то с того, что это отношение на три порядка боьше, чем у иона водорода! Почему оно больше – потому что масса частички меньше? А, может, потому что заряд у частички больше? А, может, и то, и другое?

Короче, вопрос о величине дискрета электрического заряда встал во всей своей красе, и неспроста.

Сегодня-то все, кому не лень, знают об элементарном электрическом заряде. А на рубеже XIX-XX веков, представьте себе, были физики, которые полагали, что частицы могут нести произвольные количества электричества, выражаемые даже не натуральными числами, а любыми дробными – и что в экспериментах проявляются лишь статистически средние величины заряда по ансамблю частиц.

Сейчас, конечно, подобные воззрения кажутся наивными, особенно если иметь в виду, что «электрический заряд» - это просто метка для управляющей программы. Эта метка у частицы либо есть, либо её нет – третьего не дано. Но кто понимал это на рубеже XIX-XX веков, если это и сегодня мало кто понимает? Если нынешние теоретики толкуют о кварках – якобы, имеющих дробные (!) доли элементарного заряда!

Ни стыда у этих теоретиков, ни совести – из «прекрасного далёка» плюют прямо в душу Милликену, который чуть в лепёшку не разбился, а величину «элементарного заряда» выложил на блюдечке.

Он, знаете ли, впрыскивал мелкие масляные капельки в пространство между горизонтальными пластинами, на которые подавал электрическое напряжение. Для капелек, имевших некоторый заряд, можно было подобрать напряжение так, чтобы электрическая сила почти уравновешивала силу тяжести – и тогда капелька долго оставалась в поле микроскопа, медленно двигаясь вниз или вверх.

Это происходило не в вакууме, а в воздухе, в котором предусмотрительно создавались ионы – с помощью излучения маленького кусочка радия. Если капелька присоединяла к себе ион, то её масса, практически, не изменялась, но изменение заряда вызывало изменение её вертикальной скорости.

Так вот: изменения этой скорости всегда происходили скачками. И эти скачки соответствовали изменениям заряда, которые были кратны одной и той же величине. Которую и договорились называть «элементарным зарядом».

Потом ещё было строго научно доказано, что элементарный положительный заряд по величине точно равен элементарному отрицательному. И что в состав атомов входят электроны, имеющие элементарный отрицательный заряд, и протоны, имеющие элементарный положительный заряд. И что по массе электроны и протоны различаются почти в 2000 раз, так что Дж.Дж.Томсон не зря старался.

Да, и главное: в нейтральном атоме одинаковы количества протонов и электронов – а если их количества неодинаковы, то это уже не атом, а ион. Столько всего встало на свои места!

Впрочем, оставались ещё кое-какие неясности. Например, электрический заряд – обладает ли он энергией? Вопрос-то – на засыпку. Максвеллу в его «Трактате» было легко рассуждать: «Электричество… не является, подобно теплоте, формой энергии».

Но теперь считается, что зарядом порождается поле – а поле, клянутся нам, энергией всенепременно обладает. Физическая реальность же, ёлы-палы.

Теперь, белочки и зайчики, пораскинем мозгами: если заряд энергией не обладает, может ли он порождать поле, которое энергией обладает? Ой, не может. А то закон сохранения энергии упадёт – совсем плохо будет.

Значит, энергия у электрического заряда – как бы, есть. Можно, конечно, тонким слоем размазывать сопли про то, где эта энергия локализована – на самом заряде, или в поле, или и там и сям сразу…

Но, дяденьки, зачем нам нужны три тома комментариев, замутняющих вопрос? Давайте попроще: есть электрический заряд – есть поле – есть и энергия, правда? Она так и называется: «электрическая энергия» - может, слышали?

Так вот: по вашим замечательным формулам, эта электрическая энергия у электрона и позитрона, при их близком соседстве, сопоставима с их собственными энергиями (т.е. массами, умноженными на квадрат скорости света).

Внимание, вопрос: куда же девается эта нехилая энергия при аннигиляции электрона и позитрона? Ведь там на выходе оказывается энергия, соответствующая только их собственным энергиям, и ни капельки сверх этого!

Экспериментаторы и так чуть в штаны не наложили от радости – когда обнаружили, что излучение аннигиляции в гробу видало релятивистский рост массы: даже в случае релятивистских электронов и позитронов, излучение их аннигиляции даёт всё ту же спектральную линию, ставшую настоящей находкой для калибровки гамма-спектрометров!

По счастливому стечению обстоятельств, те экспериментаторы не заморачивались проблемой с бесследным исчезновением электрической энергии при аннигиляции – а то их радость, чего доброго, превысила бы допустимый предел.

Ну, ладно, экспериментаторы тихо радовались, а теоретики-то на что? Молча взирали на бесследное исчезновение электрической энергии? Проявляли преступную халатность, или устраивали сознательную диверсию?

Да нет, у них – чистое алиби. Понимаете, слишком бурно развивалась физика – некогда было оглянуться и увидеть тот дурелом, который позади остался.

Поэтому давайте сделаем важное проясняющее допущение: электрический заряд никакой энергией не обладает. Вот масса – это и есть соответствующая форма энергии, а заряд – ни в коем случае.

Причём, если нет энергии у зарядов, то нет энергии и у движущихся зарядов. А то выдумали, тоже мне – энергию электрического тока, как энергию движущихся зарядов.

На эту тему был случай из практики. Представьте: идёт экзамен по курсу теории электричества. Девочка-отличница всё грамотно излагает – ну, уверенно идёт на очередной «пятак».

Профессору стало так хорошо, что он напоследок спросил: «А было вам на моих лекциях хоть что-нибудь непонятно?» И девочка выдала: «Вообще-то, вот простая цепь постоянного тока: аккумулятор питает лампочку, лампочка светит. Согласно уравнению непрерывности, энергия потока заряда через любое поперечное сечение этой цепи в единицу времени – одна и та же. Не понимаю: что же тогда остаётся в лампочке?»

Профессор остолбенел – он понял, что тоже этого не понимает…

Но эти непонятки пришли позже, а в начале ХХ века насчёт электричества у физиков была полная эйфория. Такая радость, такая радость! У свободного электрона есть заряд, и у свободного протона есть заряд. Величина того и другого – совершенно определённая и неизменная. Во времени неизменная, прошу заметить!

Т.е., заряды у свободных электронов и протонов всё время есть! Вон, и треки свободных электронов и протонов в камере Вильсона об этом вопиют. Смотрите: магнитное поле поворачивает вектор скорости заряженной частицы.

Если бы у неё заряд то был, то не был, в её треке криволинейные участки чередовались бы с прямолинейными. Но таких чередований не видать. Ну, тогда точно – если уж заряд у частицы есть, то он у неё всё время есть.

Это казалось совершенно самоочевидным. И едва ли кто допускал мысль о том, что у связанных электронов и протонов, входящих в состав атомов, заряды могут вести себя как-нибудь иначе, чем у свободных.

С какой, мол, стати им себя иначе вести? Разве атомы состоят не из таких же электронов и протонов, какие в камере Вильсона летают? Или протоны и электроны – разные бывают? С этой убойной логикой столкнулся бы каждый, кто усомнился бы в том, что заряды у связанных электронов и протонов всё время есть, как и у свободных.

Кстати, ведь поначалу думали, что именно благодаря зарядам протонов и электронов, т.е. на электрических взаимодействиях, держатся сами атомные структуры – больше-то вроде физически не на чем.

Это позже обнаружилась смехотворность «электрического» объяснения атомных структур, и пришлось теоретикам наворачивать крутой квантово-механический замес для того, чтобы надёжно скрыть своё бессилие в данном вопросе.

Скрыть-то скрыли, но предрассудок о том, что у атомарных протонов и электронов заряды есть всё время, успел крепко засесть физикам в подсознание – т.е. успел приобрести статус высшей научной истины, не нуждающейся в доказательствах. Из этого предрассудка – тоже вполне подсознательно – вытекало важное следствие.

А именно: у атома, содержащего одинаковые количества протонов и электронов, суммарный заряд всё время равен нулю. Значит, движущиеся атомы – не говоря уже о покоящихся! – не могут дать переноса электричества.

Для переноса электричества, дескать, непременно требуется движение частиц с ненулевым зарядом. И, венец этой подсознательной логики: переноса электричества без переноса вещества – не бывает! Аминь! Во веки веков!

То, что происходило в научных воззрениях на электричество дальше… Нет, дорогой читатель, сначала вас нужно подготовить. Вот нам не раз говорили: «Нужно уважительно относиться к достижениям предшественников!»

А то мы не понимаем! К достижениям-то мы относимся уважительно! Просто мы стараемся называть вещи своими именами – как достижения, так и всё остальное.

Так вот: для рассказа о том, что происходило в научных воззрениях на электричество дальше, лучше всего подходит ненормативная лексика. Но мы останемся в рамках литературности – так что не обессудьте!

А происходило вот что. Стройная картиночка, где заряды атомов всегда тождественно равны нулю, а перенос электричества возможен только при перемещении заряженных частиц, на корню пресекла разумные объяснения целого ряда феноменов.

Первым в этом скорбном списке стоял феномен намагничиваемости. Опыт ясно указывал на то, что магнитное действие порождается движущимися зарядами. А постоянное магнитное действие – постоянно движущимися зарядами, чёрт побери!

Но не могут в постоянном магните постоянно двигаться заряженные частицы, об этом ещё Максвелл писал: «если бы токи обычного вида протекали вокруг частей магнита заметных размеров, то имелся бы постоянный расход энергии для их поддержания, а магнит бы являлся постоянным источником тепла».

Здесь, заметим, ключевым является словосочетание «токи обычного вида». Как? – разве бывают ещё токи необычного вида?

Ещё как бывают – ведь Максвелл отнюдь не шутил! «Токами обычного вида» он называл перемещение заряженных частиц. Но он говорил ещё о «токах смещения», т.е. о переносе электричества без переноса вещества и без потерь на джоулево тепло.

Правда, он не дал разъяснений, как такое возможно – но ток смещения входил в его уравнения на равных с обычным током. «Гении тоже иногда ошибаются», - констатировали его последователи, предпочтя не иметь никакого объяснения намагничиваемости, чем разбираться с «необычными» токами смещения.

Физика, мол – наука точная! В ней всё должно быть обычно – например, как спин электрона. Хотя он до сих пор физической модели не имеет! Хотя нет ни одного экспериментального свидетельства о том, что свободный электрон спином действительно обладает!

Обычное дело, чего там (см. про спин электрона в «Фокусах-покусах квантовой теории»)! Кстати, нас агитировали: уверуйте во спин электрона, и обретёте способность объяснять намагничиваемость, даже не приходя в сознание – для этого будет вполне достаточно спинного мозга!

Разделавшись, таким образом, с намагничиваемостью, физики переглянулись: «Что бы такое ещё объяснить, не прибегая к токам смещения?» Ну, вон, например – объяснили бы секреты фокусов с пьезоэлектрическими кристаллами.

Ведь до чего там доходило: если грамотно тюкали по такому кристаллу, то на его противоположных гранях генерировались разноимённые заряды. Только вы не подумайте сгоряча, будто в нём электрончики утекали с одной стороны и притекали к другой – в диэлектрическом кристалле этот номер не проходит.

Хуже того: если бы здесь дело было в недостатке-избытке электрончиков, то грань с избытком электрончиков могла бы выдать некоторое их количество во внешнюю цепь, а грань с их недостатком – наоборот, принять их из внешней цепи.

Может, кто-то думает, что именно так и генерируется импульс тока в цепи пьезозажигалки? Ну, что вы! Никаких электрончиков пьезоэлектрический кристалл не выдаёт и не принимает. Диэлектрик же. В диэлектрике электрончики не только не могут передвигаться – там свободных электрончиков вообще нет.

А в цепи пьезозажигалки – в её внешней части, из металлических проводников – свободные электрончики есть. Когда на пьезокристалле генерируются разноимённые заряды, электрончики в проводниках уматывают от отрицательно заряженной грани кристалла, и подваливают к положительно заряженной. Вот вам и импульс тока.

Да, но откуда берутся заряды на гранях пьезокристалла? Ну, это хороший вопрос. Понимаете, наука к нему ещё не готова.

Были, правда, попыточки изобразить всё дело так, будто от механического воздействия в пьезокристалле возникает перегруппировка заряженных частиц: протончики, мол, смещаются, преимущественно, к одной грани, а электрончики – к противоположной.

Нет уж, не смешите мои тапочки: достигаемые плотности зарядов на гранях пьезокристалла требовали бы таких больших «разъезжаний» протончиков и электрончиков, при которых рассыпались бы атомные структуры, не говоря уже о кристаллических.

Аналогичные чудеса, кстати, творились и с сегнетоэлектриками – с той лишь разницей, что они могли иметь остаточную электризацию противоположных граней, сохраняющуюся без всяких внешних воздействий. И при этом, опять же, не могли ни выдать электрончиков во внешнюю цепь, ни принять их из неё. Всё это вытворялось связанными зарядами – которые генерировались и группировались загадочным для науки способом.

А ведь оно – так просто! Помните, в самом начале мы говорили про программку, которая рисовала танцующие синие и красные шарики? Так это была иллюстрация поведения свободных электрических зарядов.

Вторая версия этой программки иллюстрировала поведение и связанных зарядов тоже. Парочки «синий шарик – красный шарик» связывались, конечно, чисто программными средствами.

Смысл связывания был в том, что эти два шарика «подвешивались» на небольшом расстоянии друг от друга – причём, это расстояние жёстко фиксировалось.

Но самое интересное: в этой сине-красной связке, цвета шариков сияли не всё время: когда сиял синий цвет, красный «отдыхал» - и наоборот. Частота этих сине-красных мерцаний была довольно высока, так что сами эти мерцания были незаметны невооружённым глазом. Из-за инерции зрительного восприятия казалось, что яркости синего и красного цветов в этой связанной парочке – одинаковы.

Но так было тогда, когда каждый из двух цветов сиял в течение одной половины периода мерцаний и «отдыхал» в течение другой половины, когда сиял другой цвет. По-научному это называется так: «скважность прерываний цветов составляла 50%». Но скважность могла и отличаться от этого центрального значения.

В таком случае, в сине-красной связке происходило нечто замечательное: синий цвет сиял, скажем, каждые две трети периода мерцаний, а красный – каждую одну треть. То есть, в этой связке синий цвет доминировал во времени и, на глаз, сиял ярче, чем красный!

И, последний штришок: такие разбалансы цвета в связанных парочках были откликом на принудительные разделения синих и красных свободных шариков, а также на их принудительные потоки.

И на то, и на другое свободные шарики откликались, как мы помним, своими подвижками, а связанные парочки – разбалансами цвета. При подходящем принудительном дёргании свободных шариков, связанные парочки передавали по эстафете всплески того или иного цвета.

Происходил перенос цвета без перемещения цветных шариков! У Дремучего пользователя тихо сносило остатки крыши…

Опять же, аналогия между красно-синими связками шариков и атомарными связками «протон-электрон» - довольно удачная. Но – не буквальная.

Вот нам подсказывают: по логике «цифрового» физического мира, электрический заряд у частицы – это наличие у неё циклических смен всего двух состояний, «тик» и «так», происходящих с частотой, которую называют электронной (около 1.24×1020 Гц).

Электрон – это в чистом виде цепочка смен этих двух состояний, и ничего сверх этого в электроне нет. С протоном посложнее: у него электронной частотой промодулирована несущая, которая на три порядка выше, и которой соответствует на три порядка большая масса.

И положительный, и отрицательный заряды – это смены двух состояний на электронной частоте, разница же между зарядами по знаку – из-за того, что у положительных и отрицательных зарядов эти смены состояний происходят в противофазе.

Алгоритм, который формирует атомарные связки «протон-электрон», попеременно прерывает цепочки этих смен состояний у протона и электрона, т.е. попеременно отправляет их электрические заряды в небытие.

Поэтому связанные протон и электрон не притягиваются друг к другу, и электрон не обязан пребывать в орбитальном или ином движении для того, чтобы эта связка была стабильной. Её стабильность обеспечивается автоматически: при конкретной частоте попеременных «выключений» зарядов протона и электрона, они оказываются «подвешены» на вполне определённом расстоянии друг от друга.

Ну, и так далее – по аналогии. При 50-процентной скважности попеременных «выключений» зарядов в связке «протон-электрон», эта связка ведёт себя, в среднем, как электрически нейтральная.

При сдвиге этой скважности в ту или иную сторону, в связке «протон-электрон» доминирует во времени тот или иной заряд. Это называют «зарядовым разбалансом».

Кстати, концепция зарядовых разбалансов даёт единственное на сегодня объяснение разницы между валентными и невалентными электронами – а ведь без объяснения этой разницы не может быть и объяснения химической связи.

И разница эта – совсем простая: у невалентных связок «протон-электрон» зарядовые разбалансы не допускаются, а у валентных – допускаются.

Да, и главное: всплеск зарядовых разбалансов того или иного знака может передаваться от одних связок «протон-электрон» к другим и, таким образом, перемещаться в веществе, что даёт перенос электричества без переноса вещества. Ну, вот. Как выражался один наш сокурсник, «всё тривиальное – просто!»

Всё-таки, прав был Максвелл насчёт двух типов электрических токов. Есть движение заряженных частиц, а есть продвижение зарядовых разбалансов. В обоих случаях происходит перенос электричества!

Причём, программы, которые управляют переносом электричества, обеспечивают и необходимые для этого превращения энергии. В кинетическую энергию заряженной частицы превращается не энергия «поля», а часть собственной энергии частицы, т.е. часть её массы.

А энергия зарядового разбаланса появляется за счёт убыли энергии связи в атомарной связке «протон-электрон». Зарядовый разбаланс массой не обладает, и кинетической энергией – тоже; он безынерционен!

Эта концепция сразу же заработала на всю свою эвристическую мощь. И, в первую очередь – применительно к чему? Да к металлам! Про которые детям ещё в школе впаривают, что электричество в них переносится только свободными электронами.

Бедные дети… они такие доверчивые! И ведь сразу не догадаешься, что детям впаривают полуправду – которая, как известно, хуже чем ложь. Кто бы сомневался в том, что свободные электроны в металлах есть – на это указывает хотя бы термоэмиссия, а также холодная эмиссия, т.е. вытягивание электронов из металла сильным электрическим «полем».

Но много ли свободных электронов в металлах? – вот в чём вопрос. Теория тут уже давно впереди паровоза бежит – аж запыхалась. Теоретик Друде, будучи в здравом уме и трезвой памяти, клялся и божился, что для той хорошей электропроводности, какая есть у металлов, на каждый атом в металле должон приходиться один свободный электрон. Ни больше, ни меньше.

Т.е., атомы в куске металла должны быть тотально ионизованы. Эх, подвела трезвая память теоретика Друде: он позабыл разъяснить – по мановению какой волшебной палочки все атомы скопом ионизуются – да при температуре не в миллиарды градусов, а при какой-нибудь там комнатной.

Загадка природы! У нас в деревне в таких случаях говорят: «Листья дуба падают с ясеня…»...


О.Х.Деревенский

***



Источник.

Tags: Деревенский, Эйнштейн, математика, наука, среда, теория, физика, эфир
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 2 comments